Deoxyfluorination of alcohols with aryl fluorosulfonates†

Xiu Wang, Min Zhou, Qinghe Liu, Chuanfa Ni, Zhongbo Fei, Wei Li and Jinbo Hu*

Aryl fluorosulfonates are developed as a deoxyfluorinating reagent in the transformation of primary and secondary alcohols into the corresponding alkyl fluorides. These reagents feature easy availability, low-cost, high stability and high efficiency. Diverse functionalities including aldehyde, ketone, ester, halogen, nitro, alkene, and alkyne are well tolerated under mild reaction conditions.

The introduction of a fluorine atom confers unique chemical, physical and biological properties on organic molecules, and has become a standard routine to discover new candidates of materials and pharmaceuticals.1 In terms of aliphatic carbon–fluorine-bond formation, the deoxyfluorination of alcohols is recognized as a straightforward and efficient approach, due to the abundant and readily available alcohol-containing precursors.2 Conventional fluorinating reagents for deoxyfluorination of alcohols include DAST,3 Deoxo-Fluor,4 XtalFluor,5 and Fluolead,6 which are limited by their thermally instability, high cost, and/or poor functional-group tolerance. Subsequently, representative z-fluorinated alkylamines such as PhenoFluor,7 AlkyFluor,8 and carbon-based CpFluor9 were developed, which improved the substrate scope and selectivity to a large extent. Besides, a sulfur-based reagent is another indispensable category in deoxyfluorination of alcohols, especially for the analogs of sulfonyl fluoride (Scheme 1a). Only one example was described that uses gaseous sulfuryl fluoride (SO2F2) as a fluorination reagent.10 PBSF,11 PyFluor,12 and SulfoxFluor13 were distinguished by their good balance between high reactivity and great stability. However, they still suffered from safety concerns, unsatisfactory results with benzylic alcohols, multistep synthesis, and/or the poor fluorine atom economy (especially the PBSF reagent). Therefore, readily available, bench-stable, easy-to-handle and inexpensive fluorinating reagents are still highly desired.

Aryl fluorosulfonates could be easily synthesized from the reaction of phenols and sulfuryl fluoride (SO2F2) in high yields under mild reaction conditions.15 They are conventionally used as aryl electrophile alternatives to aryl triflates and well documented in various transformations (Scheme 1b).16–22 The OSO2F unit could not only function as a good leaving group, but a stable sulfate connector applied in click chemistry (Scheme 1b).23 To date, the use of aryl fluorosulfonates as

Scheme 1 Deoxyfluorination of alcohols and applications of aryl fluorosulfonates.
halogenating agents has not been reported.23b Herein, we reported the novel application of \(\text{ArOSO}_2\text{F}\) in deoxyfluorination of alcohols, which constitutes a practical method for the synthesis of alkyl fluorides, due to their easy availability, low cost, and high stability towards air and moisture (Scheme 1c).

Initially, \(\text{N}-\text{hydroxethyl phthalimide (3a)}\) and \(\text{aryl fluorosulfonate bearing a nitro group (2a)}\) were chosen as the model reaction substrates. Various reaction parameters including solvent (Table S1, ESI†), amount of aryl fluorosulfonate (2a) and base (Table S2, ESI†) were systematically evaluated. As a result, 73\% yield of the desired product 4a was obtained with 1 equivalent of 3a and 1.2 equivalent of 2a activated by 1.5 equivalent of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in toluene at room temperature for 20 h (Table 1, entry 1). Other organic bases such as 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), and 1,1,3,3-tetramethylguanidine (TMG) were also tested, and all of them were proved to be less efficient in the present transformation (entries 2–4). The effect of the electronic nature of aryl fluorosulfonates on the fluorinating ability of aryl fluorosulfonate was further studied, and electron-deficient functional groups incorporated into phenyl sulfurofluoridate (4a) showed moderate to good yields. In particular, the yield of 4a was further increased to 88\% when 2-buty-1,1,3,3-tetramethylguanidine (BTMG) was used instead of DBU under the identical reaction conditions (entry 10).

The performance of 2b with primary alcohols under the optimized reaction conditions was evaluated as shown in Table 2. Pharmaceutically important heterocycles such as pyridine and benzofuranone-containing compounds provided 4d and 4s in 33\% and 40\% yields, respectively. Notably, 20 mmol scale synthesis of 4a was tested with 76\% (2.9 g) isolated yield, which demonstrated the practicability and effectiveness of this methodology, as well as its value and prospects in industry. Unhindered benzylic alcohols bearing methyl, nitro, and cyano groups regardless of the steric effect delivered fluorinated products 4e–4h and 4t in good yields, which showed the advantages of our method over PyFluor.12 Fused aromatic rings such as naphthyl (3i), pyrene (3j) or long alkyl chain (3k) containing primary alcohols could also be fluorinated in this transformation. The present protocol was highlighted by various functionalities including alkene (4l), alkenes (4m–4o), ketone (4p, 4q), and ester (4r), which proved that 2b is a practical alternative to other fluorinating reagents.

Deoxyfluorination of secondary alcohols was also accomplished with the assistance of tris(dimethylamino)sulphonium difluorotrimethylsilicate (TASF) under the optimized reaction conditions (Table 3). Acyclic secondary alcohols were reliable for the generation of fluorinated products 6a–6c. Good selectivity was demonstrated by the substrates with ketone (5f) or ester (5h).

Table 1 Optimization of the reaction conditions7

<table>
<thead>
<tr>
<th>Entry</th>
<th>2</th>
<th>Base</th>
<th>4a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>DBU</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>DBN</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>TBD</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>2a</td>
<td>TMG</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>2b</td>
<td>DBU</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>2e</td>
<td>DBU</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>2f</td>
<td>DBU</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>2e</td>
<td>DBU</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>2f</td>
<td>DBU</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>2b</td>
<td>BTMG</td>
<td>88 (86)</td>
</tr>
</tbody>
</table>

\(\text{a} \) Reaction conditions: 3a (0.5 mmol), 2 (1.2 equiv.), base (1.5 equiv.), toluene (5 mL), r.t., 20 h. \(\text{b} \) Determined by \(^{19}\text{F} \) NMR analysis of the crude mixture, using fluorobenzene as an internal standard. An isolated yield is given in parentheses.

Table 2 Deoxyfluorination of primary alcoholsa,b

<table>
<thead>
<tr>
<th>R–OH</th>
<th>R–F</th>
</tr>
</thead>
</table>
| OCH\(_2\)CH\(_3\) | OCH\(_2\)CH(\text{CF}) |}

\(\text{a} \) Reaction conditions: 3 (0.5 mmol), 2b (0.6 mmol), BTMG (0.75 mmol), toluene (5 mL), r.t., 20 h. \(\text{b} \) Determined by \(^{19}\text{F} \) NMR analysis of the crude mixture, using fluorobenzene as an internal standard.
aldehyde (5g) groups, which are prone to form geminal difluorides.24 Other heterocyclic secondary alcohols were investigated and transformed into the desired products 6b-6j with moderate to good yields. Deoxyfluorination of chiral secondary alcohol (5k) gave inverted product 6k with 69% yield and 99.6% enantiospecificity. A set of control experiments were conducted to illustrate the high selectivity of 2b (Scheme 2). Based on the research of Sanford and co-workers, aryl fluorosulfonates could be directly reacted with tetramethylammonium fluoride (Me4NF) to give 4-(methylsulfonyl)phenyl sulfurofluoridate, especially benzylic, aldehyde or ketone-substituted alcohols. The merits of high reactivity and selectivity, great stability, low-cost and mild reaction conditions made the 4-(methylsulfonyl)phenyl sulfurofluoridate a promising deoxyfluorinating reagent.

In summary, we discovered the fluorinating ability of 4-(methylsulfonyl)phenyl sulfurofluoridate in deoxyfluorination of alcohols for the first time. A wide range of primary and secondary alcohols were efficiently fluorinated with 4-(methylsulfonyl)phenyl sulfurofluoridate, especially benzylic, aldehyde or ketone-substituted alcohols. The merits of high reactivity and selectivity, great stability, low-cost and mild reaction conditions made the 4-(methylsulfonyl)phenyl sulfurofluoridate a promising deoxyfluorinating reagent.

This work was supported by the National Key Research and Development Program of China (2016YFB0101200), the National Natural Science Foundation of China (21632009), the Key Program of the Chinese Academy of Sciences (QYZDJ-SSW-SLH049) and the Fellowship of Postdoctoral Science Foundation of China (2020M671273).

Conflicts of interest

There are no conflicts to declare.

Notes and references

